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Abstract-This paper shows how slightly complex but angular fault shapes with only a few bends lead to broadly 
curved and/or highly complex folds. 

A common perception exists that simple, angular fold geometries are a necessary consequence of the normal 
assumptions of fault-bend fold theory - namely angular fault-bends, straight faults and flexural slip. To the 
contrary, it is shown here that exact application of these low-level assumptions produces great complexity from 
simple fault shapes. This complexity is caused by the combination of (1) generation of new axial surfaces by 
displacement of hangingwall cut-offs past successive fault bends and (2) fragmentation of axial surfaces by mutual 
interference. The result is entwined arrays of fold axial surfaces that produce quasi-curved and/or complex folds 
from discrete angular fault bends. Fold complexity grows in a highly non-linear way. In the most extreme case the 
number of fold axial-surface segments grows as the fourth power of the number of fault bends. This paper presents 
examples of the immense variety of complex fold geometries that are thus generated. 0 1997 Elsevier Science Ltd. 
All rights reserved. 

INTRODUCTION 

Fault-bend folds grow and change shape progressively in 
complex ways as fault blocks move over the bends in non- 
planar faults (Rich, 1934). A quantitative compressional 
theory relating fold shape to fault shape was first 
developed by Suppe (1983); introduced earlier by Suppe 
and Namson (1979) based on conservation of layer 
thickness and bed length. Subsequently, the theory was 
extended to incorporate fault-propagation and other tip- 
line folds (Suppe, 1985; Jamison, 1987; Chester and 
Chester, 1990; Mitra, 1990; Suppe and Medwedeff, 
1990; McConnell, 1994). These theories have been 
widely applied and successfully tested in the interpreta- 
tion of well-constrained subsurface structures (e.g. 
Suppe, 1980, 1986; Namson, 1981, 1983, 1984; Namson 
and Davis, 1988; Medwedeff, 1989, 1992; Beer et al., 
1990; Mount et al., 1990; Narr and Suppe, 1994; Novoa 
and Suppe, 1994; Shaw and Suppe, 1994,1996). 

Perceived limitations offault-bendfold theory 

Suppe’s (1983) quantitative theory is formulated for 
flexural-slip folds at angular bends in straight faults, with 
the idea that curved faults could be approximated as a 
number of sharp bends. Nevertheless, most examples 
presented in the original paper focus on straight flat- 
ramp-flat geometries (Fig. 1). When applied to such 
simple fault geometries, fault-bend fold theory produces 
simple fold shapes that only crudely approximate natural 
fold shapes. In particular, they display a marked 

angularity both in hinge shape and overall geometry, 
which are two separate effects. The angular hinge shape 
exists because the hinge zone is explicitly ignored as 
second order. In contrast, the overall angularity is a 
direct effect of modeling structures with long, straight 
fault ramps. Only a limited number of published studies 
have treated more complex fault-ramp shapes (e.g. 
Namson, 1981; Apotria et al., 1992; Medwedeff, 1992; 
Narr and Suppe, 1994). 
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Fig. 1. Flat-rampflat fault-bend fold formed over an angular thrust 
ramp. Wide application of this simple yet powerful model has resulted in 
a common misperception that fault-bend fold theory applies only to 

simple, angular folds. 
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Approach and purpose 

This paper applies existing fault-bend fold theory to 
more complex fault shapes to create exact, geometric fold 
models. It shows how a sparse set of low-level geometric 
and kinematic processes produce an immense variety of 
complex fold geometries from simple fault shapes. These 
results may help dispel the misconception that fault-bend 
folding processes can generate only simple, angular fold 
geometries. 

SIMPLE FAULT-BEND FOLDING 

This paper requires concepts of axial-surface behavior 
and nomenclature that differ in a significant, subtle way 
from the standard theory (Suppe, 1983; Suppe et al., 

1992). Therefore, a brief review of standard fault-bend 
fold theory is necessary. 

Single,fault bend 

The essence of standard fault-bend fold theory is 
contained in the deformation at a single bend in a 

compressional fault (Fig. 2). Two low-level assumptions 
are made: (1) the fault consists of straight segments 
separated by an angular bend and (2) the footwall is rigid 
and the hangingwall deforms only by flexural slip, 
conserving both layer thickness and bed length. Given 
these assumptions, fault displacement is accompanied by 
growth of a kink band at the fault bend. The axial 
surfaces bisect bends in hangingwall beds, a continuity 
condition for conservation of layer thickness. The bed- 
ding cut-off angle within the kink band /I is a function of 
the cut-off angle before the bend 8 and the change in fault 
dip 4 (Suppe, 1983, eqs 7 & 8). After finite slip, material 
within the kink band has been both sheared and 
translated parallel to the fault. Material outside the kink 
band has been rigidly translated parallel to the fault. The 

Axial Surfaces 

R_ Slip2 - - - 

Fig. 2. Geometry and kinematics of a single-bend fault-bend fold. Fault 
displacement results in a kink band forming at the fault bend. Angle 
between bedding and the fault 0 and the change in fault dip q5 control the 
angle between the fault and bedding in the kink band B and the ratio of 

fault slip after and before the bend R. 

change in fault slip across the fault bend is due to the 
change in length of the fault cut-off within the kink band 
due to folding. Because there is only one fault bend, fold 
shape is constant and both fold amplitude and fold width 
increase continuously with fault slip. 

Folding by kink-band migration occurs instanta- 
neously through bedding-parallel shear along the axial 
surface pinned to the fault bend. This active axial surface 
divides the hangingwall into two blocks that move by 
rigid translation parallel to their respective fault seg- 
ments. This velocity change across the active axial surface 
produces the folding (Hardy, 1995). Since the active axial 
surface is fixed to the footwall, it migrates with respect to 
the hangingwall particles that contain it. In contrast, the 
companion inactive orjIxedaxia1 surface is stationary in a 
hangingwall reference frame. Thus the inactive axial 
surface contains the particles that originally lay along 
the active axial surface at the beginning of deformation 
and is attached to the top of the hangingwall cut-off of the 
fault bend. 

An additional nomeclature of leading and trailing axial 
surfaces will prove helpful. In this one-bend example, the 
inactive axial surface is displaced in the direction of fault 
dip relative to its pair and is thus here termed the reading 
axial surface, labeled 1lL in Fig. 2. Similarly, the active 
axial surface in this case is called the trailing axial surface, 
labeled 11T. The label II indicates the fold that is 
produced by the first hangingwall cut-off passing through 
the first fault bend. Similarly, the kink band produced as 
the first hangingwall cut-off passes through a second fault 
bend would be 12TL. 

This one-to-one equivalence of active and inactive 
axial surfaces with leading and trailing axial surfaces 
breaks down in the more complex fault-bend folding 
phenomena discussed in this paper. Both leading and 
trailing axial surfaces may move with respect to the 
material. Furthermore, inactive leading or trailing axial 
surfaces need not coincide with the material particles that 
originally lay along an active equivalent. Different parts 
of axial surfaces may move with different velocities or be 
active or inactive and they may lengthen and shorten with 
time, in many cases attaining zero length. The basic new 
concepts of axial-surface interaction are introduced 
below as needed. 

KINK-BAND INTERFERENCE 

Simple kink-band interference andfragmentation 

With more than one fault bend, the possibility exists 
that kink bands may intersect and interfere. These kink 
bands may be generated simultaneously by multiple 
bends in a single fault, as considered in this paper, or 
they may be generated sequentially by faults of different 
ages (Mount, 1989). 

Consider the fault with two bends shown in Fig. 3; 
before any fault displacement the two kink bands IITL 
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a) before deformation b) clockwise solution c) counter-clockwise solution 

Fig. 3. Initiation and evolution of kink-band interference structure above a two-bend fault system. (a) Geometry of incipient 
axial surfaces prior to fault slip. (b) Clockwise interference geometry. (c) Counterclockwise interference geometry. 

and 22TL have zero width and intersect at material point 
PO. Two solutions for the subsequent fold shape are 
known to satisfy the constraints of conservation of layer 
thickness and bed length (Fig. 3b & c). In both solutions, 
one kink band is sheared and the other is split into two 
fragments. In the clockwise solution, kink band 22 is 
sheared in a clockwise sense, whereas in the counter- 
clockwise solution, kink band 11 is sheared counter- 
clockwise. The clockwise and counter-clockwise termi- 
nology is relative to the direction of view, but provides a 
convenient designation. 

As soon as the fault begins to slip and the two kink 
bands form, the single intersection point PO splits to 
become two pairs of points PI-P2 and PJ-P~ which are 
connected by the interference axial surfaces IlX22T and 
llX22L. Each point is a branch point across which axial 
surfaces branch or merge. Note that the members of a 
pair of branch points are opposite in sign (i.e. one 
branches and one merges) and lie on the same strati- 
graphic horizon; this is required by conservation of shear. 
Briefly, as shown by Suppe (1983), there is a discontin- 
uous change in bedding-parallel shear across a branch 
point, therefore balancing requires opposite-sign 
branches to lie along the same bedding plane and have 
identical changes in shear magnitude. 

A related balancing constraint is that bed length or 
kink-band width of a given dip must be the same at all 
horizons above the fault cut-off. That is, no kink-band 
width is gained or lost in the process of kink-band 
fragmentation. For example, in the clockwise solution 
(Fig. 3b), kink band 11 has a constant width from the 
fault up to the first branch point PI, at which point it 
narrows until it has zero width at branch point P3. 
However, the other fragment of kink band 11 increases 
from zero width at branch point P2 to the full width at 

branch point P4; since the branch-point pairs are on the 
same bed and the interference axial surfaces llX22T and 
ZlX22L are parallel, the kink-band widths are the same 
for all stratigraphic horizons. Similarly, the kink-band 
widths are the same for all horizons within the sheared 
kink band 22. 

The shear surface linking two branch points may be 
considered a degenerate axial surface parallel to bedding; 
thus we speak of PI-P2 and P3-P4 as axial surfaces. These 
axial surfaces are degenerate geometrically because there 
is no dip change accross the M. None-the-less, that PrP2 
and PrP4 are indeed kinematic axial surfaces is clear 
because they bound the sheared segment of kink band 22 
in Fig. 3(b). Furthermore, they are active axial surfaces 
because they sweep through the rock with time; PI-P2 
migrates downward within kink band 22 from point PO 
and PrP4 migrates upward. Migration of bedding- 
parallel axial surfaces is also a property of fault- 
propagation folds, where the anticlinal branch point is 
connected to the fault tip by a bedding-parallel axial 
surface (Suppe and Medwedeff, 1990; Mosar and Suppe, 
1992). Later in this paper we will see bedding-parallel 
axial surfaces that link branch points to fault cut-offs. 

The set of axial surfaces within and above the 
interference structure have more complex kinematics 
than the underlying kink bands linked to the fault cut- 
offs. Below the zone of interference, IIL and 22L are 
inactive axial surfaces and II T and 22T are active (Fig. 
3~). In contrast, all the higher axial surfaces are active and 
move with different velocities than their lower equiva- 
lents. As a result of interference we have a total of 12 axial 
surfaces, 10 of which are active. Even though the 
underlying axial surfaces IIL and 22L are inactive they 
change length with time. For example, in Fig. 3(c), axial 
surface 22L lengthens as Pj propagates up from PO 
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al) initiation of 1 internal kink a2) initiation of 2 internal kinks b) growth of 1 internal kink 

E 
Fig. 4. Initiation and growth ofan internal kink-band interference structure. (al) Kink band I2 forms inside dip panel of kink 
band II intersecting axial surface II Tat point PO The resultant intersection axial 12BTdips too steeply to propagate from 
point PO and so extends as a clockwise intersection from point PO*. (a2) Same as (a) except that it extends as a counter- 
clockwise intersection from point PO* forming a second internal kink. (b) Growth of single, internal kink geometry initiated in 

(al). 

parallel to 22L; 1lL shortens as PI propagates downward 
and IIL will disappear when PI reaches fault bend 2 (see 
Fig. 8). The complex models presented later in this paper 
requires the ability to calculate the locations and motions 
of each axial surface segment and its branch and fault 
cut-off points. 

Both the clockwise and counter-clockwise interference 
solutions are not always possible. If the merged axial 
surface (for example, ZZX22T or llX22L) projects 
through PI between the two merging axial surfaces (for 
example, 11L and 2273, then both the clockwise and 
counter-clockwise solutions are possible. If the merged 
axial surface projects to the right of the merging axial 
surfaces then only the counter-clockwise solution is 
possible; if the merged axial surface projects to the left 
then only the clockwise solution is possible. In more 
complex situations involving more kink bands, some of 
these possibilities may be excluded for other reasons. 

The two possible interference solutions (Fig. 3b & c) 
could be analogous to the multiple solutions to the fault- 
bend fold equation (Suppe, 1983; Zoetemeijer, 1993); 
that is, only one may exist in nature for mechanical 
reasons. Large-scale kink-band interference is known to 
exist in nature, as discussed below, but it is worth 
considering what conditions might favor the clockwise 
or counter-clockwise solutions. Two possibile controls 
on interference geometry are the stress state and the 
kinematics of fold propagation and fault slip. The state of 
stress may favor one solution over the other. For 
example, the shear stress on PI-P2 will in general be 
different in the two solutions. Perhaps more importantly, 
especially at the initiation of the interference geometry, 
earthquakes may propagate along the fault in a parti- 
cular direction, for example from bottom to top as the 

fault propagates. If slip builds up from the bottom then 
kink band 11 may be established before kink band 2. In 
this case kink band 22 folds kink band 11, which is the 
counter-clockwise solution. 

We will see that even in the highly complex models 
presented later in this paper the same principles hold: (1) 
branch points are linked by bedding-parallel axial 
surfaces such as PI-PJ and PrP4, (2) the sum of kink- 
band widths of a given dip is constant for all horizons 
above the fault cut-off, which is to say no kink-band 
width is lost or gained in the fragmentation of kink bands 
by interference, (3) the number of active axial-surface 
segments increases dramatically as a result of interference 
and fragmentation. 

The kink-band interference just considered is a direct 
consequence of the basic assumptions of simple fault- 
bend folding theory. Whether or not rocks deform in this 
way is an important issue. It is well known from lab and 
outcrop observations that many complex systems of 
chevron folds form by interference of kink bands 
(Paterson and Weiss, 1973; Weiss, 1973; Stewart and 
Alvarez, 1991). Furthermore, some large folds have 
geometries suggestive of kink-band interference (Faill, 
1969, 1973). An example of large-scale kink-band 
interference is given by Mount (1989). 

Internal kink interference 

The simple interference of two kink bands discussed 
above (Fig. 3) is not the only possibility. Here we briefly 
introduced another type of interference between two kink 
bands, called internal interference (Fig. 4). At the 
initiation of interference (Fig. 4al) a new kink band 
12TL forms within an existing kink band IlT-1lL. The 
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underlying new kink band emanates from fault bend 2 
and intersects axial surface 11 Tat PO. However, it cannot 
form a conventional interference structure because the 
new merged axial surface l2BT (see Fig. 4b, the B 
signifying a branch axial surface as defined later in the 
paper) will have a steeper dip than IZT. Therefore the 
new kink band 12BTL must be displaced to point PO* on 
the leading axial surface IZL (Fig. 4al). This geometry 
leads to fragmentation of both kink bands forming 15 
axial surfaces, 7 of which are active (Fig. 4b). The initial 
branch line P,Po* splits into two axial surfaces, P2-Pj 
which is inactive and PCP5 which is active and sweeps 
upward. The initial branch point PO itself splits into three 
points PI, PJ and Pd. 

The interference geometry in Fig. 4(al & b) is not the 
only possibility. The process of internal kinking can 
occur more than once before the IZBTL kink band exits 
the 11 TL kink band. Figure 4(a2) shows the initiation of 
the solution with two internal kinks. 

EFFECTS OF MULTIPLE FAULT BENDS 

Multiple fault bends give rise to complex fold shapes 
by a combination of two sets of processes, the first being 
kink-band interference introduced above. Here we 
consider the second set of processes, those associated 
with the generation of new dip panels and axial surfaces 
as hangingwall cut-offs are displaced past successive fault 
bends in the footwall. The essence of multibend fault- 
bend folding is illustrated by considering a fault with two 
bends. The folding processes introduced for two bends 
are then applied to faults with three or more bends. 

Two-bendfaults 

Consider the stages in development of a fold above a 
two-bend fault, the first bend concave-up and the second 
convex-up. First-generation kink bands form at each 
bend with the initiation of slip (Fig. 5a); each with a 
specific bedding dip controlled by the local fault-bend 
angles 41 and I$Q and hangingwall cut-off angles 8,, and 
Bt2 (the subscripts of 8 are hangingwall cut-off and fault- 
bend number, respectively). With continued slip, these 
kink bands widen to form an anticline (Fig. 5b). The two 
kink-band widths are different because slip on the fault is 
modified by folding at each bend (see Fig. 2). 

When the hangingwall cut-off of the first bend passes 
through the second bend, there is a change in the angular 
relationships that determine the fold shape. Specifically, 
the initial hangingwall cut-off angle tJz2 for beds moving 
through bend 2 is replaced by 0r2, which is equal to the 
folded-bed cut-off angle from bend 1, pi1 (Fig. 5d). This 
leads to a new folded cut-off angle /II2 as cut-off 1 moves 
beyond bend 2, with j3i2 determined using 8i2 and & in 
the fault-bend fold equation (Suppe, 1983). The new fold 
angle creates a new second-generation kink band (Fig. 5~). 

a) Fold Initiation 

---_culoni ! -’ 
find 1 

f%lT 

b) First-Generation Kink-Bands 

c) Second-Generation Kink-Band 

d) Angular Relations 

Fig. 5. Geometry and kinematics of a two-bend fault-bend fold. The 
subscript on C$ refers to the fault-bend number. The subscripts on 0 refer 
to the hangingwall cut-off and fault-bend number, respectively. (a) 
Initial fold geometry with hangingwall cut-offs and fault bends labeled. 
(b) Fold geometry of at the transition from first-generation to second- 
generation axes. (c) Geometry of second-generation kink band at fault 
bend 2. (d) Angular relations of second-generation kink band at fault 

bend 2. 

Axial-surface matrix 

With more fault bends, so many axial surfaces are 
generated that they present both conceptual and practical 
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Fig. 6. Matrix of potential axial surfaces. First-generation axial 
surfaces have equal fault-bend and hangingwall cut-off numbers and 
thus lie on the diagonal. Off-diagonal, or second-generation, axial 
surfaces have unequal fault-bend and hangingwall cut-off numbers. 
Generalized functional controls on fold geometry is indicated in the 

box. 

book keeping problems. Part of this complexity is easily 
handled with an axial-surface matrix. The number of 
possible kink bands is a function of the number of fault 
bends. For a given fault geometry, the set of all possible 
kink bands potentially emanating from the fault can be 
described by a matrix whose cells define all possible 
combinations of hangingwall cut-offs and fault bends 
(Fig. 6). The matrix is triangular because, with contrac- 
tion, each hangingwall cut-off can only move past fault 
bends that are greater-than or equal in number. Thus a 
single-bend fault has only one possible kink band 
whereas a two-bend fault has three possible kink bands 
(one from each bend separately and one from the two 
bends together). In general, a fault with Nfb bends will 
have (Nfi2 + Nfi)/2 possible kink bands (Fig. 6). 

Folding parameters in the diagonal cells describe the 
first-generation kink bands (Fig. 6). Later generation 
kink bands correspond to off-diagonal cells. Matrix 
axial-surfaces separate bedding dips from adjacent cells. 
As hangingwall cut-offs move past fault bends with 
increasing fault slip, the matrix cell that is active at a 
given fault bend migrates down the matrix column. With 
arbitrarily large displacement, hangingwall cut-off 1 is 
juxtaposed against all the fault bends and thus all cells in 
the first row are active. 

The axial-surface matrix provides a useful conceptual 
framework for forward modeling of fault-bend folding. 
Each matrix cell represents the folding parameters (6’ and 
4) for a given possible kink band. Because the footwall is 
rigid, the fault-bend angle 4 is constant for each column. 
In contrast, the cut-off angle B changes along rows due to 
folding of the hangingwall. In general, 19,~ is equal to 

Bnm - I, where Pnm - I = f(f&,,.- 1, &). The orientation of 

the active axial surface for each cell is computed from 
bisecting the previous and present bedding dips. The 
ratio of slip R at each bend is also a function of 8,, and 

& (Suppe, 1983). 
It is important to realize that the axial-surface matrix 

only specifies the potential fold dips and axial-surface 

0 Shearbalancedbydifferentialfault-slip 
m Shearbalancedbycomplementaryaxialsurface 

Fig. 7. Detailed geometry of a branch axial surface. Numerals indicate 
the originating hangingwall cut-off/fault-bend combination which 
generated the axial surfaces. The letters L and T designate leading and 
trailing axial surfaces, respectively. B indicates branch axial surfaces. 
Axial surface I2L has zero length and is thus degenerate. Branching of 
axial surface 12T occurs at its intersection with the horizon of 
hangingwall cut-off 1. Folding shear for kink-band 12 is balanced by 
varying fault slip below horizon 1 and by oppositely-signed axial 

surfaces above horizon I. 

orientations at the fault cut-offs along the fault. Processes 
of interference produce additional axial surfaces within 
the hangingwall above the fault. Thus, whereas calcula- 
tion of all matrix cell parameters completely specifies the 
set of all possible fold dips generated by a given fault 
during slip, the matrix does not fully constrain the fold 
topology and proportions in the overlying fault block. 
The relative lengths of the fault segments are required in 
addition to compute the topology and locations of the 
network of axial surfaces in the hangingwall. Analogous 
matrices can be used to describe the axial-surface 
geometry above the fault. 

Axial-surface branches linked to fault cut-offs 

An additional phenomenon of axial-surface branching 
that is specifically linked to fault cut-offs is important in 
multibend fault-bend folding. Once again, an analysis of 
the previous (Fig. 5) two-bend case is instructive. 

Consider the detailed geometry of axial surfaces 
associated with the second-generation kink band 
(shaded) of the two-bend fault-bend fold (Fig. 7). 
Within the kink band, strata beneath horizon 1 have 
passed over bend 2 and been folded along axial-surface 
12T to accommodate the change in fault dip and fault 
cut-off (folding from pi, = d12 to /?i2). Axial surface 12T 
thus bisects bedding dips of the 1 I and 12 kink bands. 
Axial-surface I2Tis pinned to fault bend 2. Axial-surface 
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12L is nominally attached to hangingwall cut-off 1. 
However, because there are no strata beneath horizon 1 
at hangingwall cut-off 1, axial-surface 12L has zero 
length and is thus degenerate. 

Strata above horizon 1 in the 12 kink band are folded 
to the same dip as those below. However, unlike the 
strata below horizon 1, they do not adjoin the 11 kink 
band. Instead, the upper part of the 12 kink band forms 
in the area of regional dip between the 11 and 22 kink 
bands (Fig. 5b). Since they bisect different dips, the 
orientation of axial surfaces bounding this portion of the 
kink band differs from that of the 12T axial surface. The 
new axial surfaces are called branch axial surfaces 
because the Z2B axial surfaces split, or branch, from the 
12 axial surfaces at points PI and P2, respectively (Fig. 7). 
Branch axial surfaces are distinct from matrix axial 
surfaces because they separate off-diagonal bedding dips 
from dips of non-adjacent cells or the regional dip. 

In general, the axial-surface branch points consist of 
junctions of three axial surfaces that are linked along a 
bedding plane to a fault cut-off, such that bedding- 
parallel shear is conserved. For example, both the 12BT 
and ZlL axial surfaces branch from the Z2T axial surface 
at point PI (Fig. 7). Similarly, both the I2BL and 22T 
axial surfaces branch from the 12LT axial surface at P2, 
although the last axial surface is degenerate. Both branch 
points lie along horizon 1, the stratigraphic horizon of 
hangingwall cut-off 1, and are linked by bedding-parallel 
axial surface P,-PJ. Branching along horizon 1 is 
geometrically necessary to accommodate the change in 
bedding-parallel shear generated by the 12 kink band. 
Strata below horizon 1 undergo a constant shear related 
to the dip change across axial surface Z2T. This shear is 
locally balanced by differential slip on the fault surface 
(Suppe, 1983). Strata above horizon 1 have a different 
value of shear imposed by the different dip-change across 
axial surface 12BT. This shear is balanced by the 
complimentary shear across axial surface 12BL. Thus, 
axial-surface branches are the discrete fold response to 
discrete changes in fault dip. 

Development of axial-surface branches modifies the 
distribution of instantaneous bedding-parallel shear. For 
the above case, shear associated with the change in dip at 
fault bend 2 occurs initially along axial surface 22T (Fig. 
5b). However, after generation of kink band 12, axial 
surfaces 12BL, 22T and bedding-parallel axial surface 
PI-P2 become attached to hangingwall cut-off 1 and are 
inactive (Fig. 7). Conversely, the formerly inactive axial 
surface 11L and the new axial surface 12BT become 
attached to the second-generation Z2T axial surface. 
Because 12T is fixed to fault bend 2, both it and its 
associated branch axial surfaces are active. Thus, in 
general, systems of axial surfaces tied to hangingwall cut- 
offs are inactive, whereas similar systems attached to 
fault bends are active. 

Mixing of kink-band interference with axial-surfaces 
branches produces particularly complex geometries. 
Figure 8 shows the evolution of another two-bend fold; 
SG 19-314-c 

it treats the case of Fig. 3 but with more slip. In this 
example, fault bend 1 is convex-up and fault bend 2 is 
concave-up so that the first-generation kink bands 
interfere in a counter-clockwise geometry (Fig. 8a). 
With progressive displacement, PI-P2 migrates down 
toward the fault surface until hangingwall cut-off 1 meets 
fault bend 2 (Fig. 8b). At this stage, the kink-band branch 
points lay on horizon 1. With further fault-slip, the 
second-generation, 12 kink band forms between the 11 
and 22 kink bands. The new dip-panel is bounded by the 
22T and 12BL axial surfaces (Fig. 8~). These axial 
surfaces converge at Ps thereby spawning a new branch 
at P6. Because the 12BL axial surface is attached to 
hangingwall cut-off 1, Ps_P~ migrates up-section with 
continued displacement. In contrast, the 12BT axial 
surface is attached to Pz which, in turn, is fixed to 
horizon 1 (Fig. 8~). This example illustrates how axial- 
surface branches and kink-band intersections can 
become entwined. What distinguishes the two features is 
that branches are related directly to the fault-geometry 
and have branch points which are fixed to the hanging- 
wall cut-off horizons. In contrast, kink-band intersec- 
tions are simply fold-interference phenomena within the 
hangingwall and have freely migrating branch points. 

SEQUENTIAL EVOLUTION OF MULTIBEND 
RAMPS 

We have now considered the main low-level phenom- 
ena that are important in multibend fault-bend folds, 
although we have only used examples of two fault bends. 
In principle we can now produce rigorously balanced 
forward models of any multibend fault shape if we are 
able to correctly track these low-level phenomena. 

Three-bend ramps 

We now present the slightly more complex case of a 
three-bend ramp to model the development of concave- 
up and convex-up thrust ramps (Fig. 9). Building on this 
we will model later a more continuously curved ramp and 
more complex faults. Three-bend ramps display four 
abrupt kinematic transitions: initiation of slip followed 
by three juxtapositions of hangingwall and footwall cut- 
offs. Initial displacement on the concave-up system 
generates three thin, first-generation kink bands (Fig. 
gal). These kink bands widen until hangingwall cut-off 2 
adjoins fault bend 3 (Fig. 9a2). Then kink bands 22 and 
33 maintain their width while kink bands 11 and 23 widen 
until hangingwall cut-off 1 adjoins fault bend 2 (Fig. 
9a3). Now kink bands 12 and 23 widen while 11 
maintains its width and 22 narrows until hangingwall 
cut-off 1 adjoins fault bend 3 (Fig. 9a4). Continued 
displacement widens the fold but does not modify the 
axial-surface topology (Fig. 9a5). The convex-up thrust 
undergoes a similar series of four kinematic transitions 
(Fig. 9b). 
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a. Intersection of first-generation axial surfaces 

rd2mCutolfl=p, 

b. Initiation of second-generation axial surface: 

mend 1 

i&d 2 

c. Growth of second-generation and 
associated branch axial-surfaces 

A general three-bend fault system has six ([32 + 3]/2) 
possible kink-band dips (Fig. 6). The composite anticline 
generated by the concave-up thrust ramp has three 
hinterlandward and two forelandward, or five total 
unique dip-magnitudes (Fig. 9a5). In contrast, the 
anticline generated by the convex-up thrust ramp has 
two hinterlandward and three forelandward dips (Fig. 
9b5). The reversal of asymmetry is due to the change in 
sign of dip-change at the middle fault-bend (compare Fig. 
9a2 & b2). In both cases, the lack of a sixth unique dip is 
due to the fact that the 13 dip-panel is produced by a flat- 
on-flat relationship. 

The degenerate case of straight ramps 

The axial-surface topology of straight ramp fault 
systems is more subtle and results in simpler fold 
geometries than multibend ramp systems. This is illu- 
strated with analysis of two cases: faults with one (Fig. 
10) and two thrust ramps (Fig. 11). 

Figure 1 shows the geometric development of a flat- 
ramp-flat thrust system. As discussed by Suppe (1983), a 
kinematic transition in fold evolution occurs when the 
base of the ramp is displaced to the upper flat (Fig. lOa). 
Prior to this point the III!. axial surface is attached to 
hangingwall cut-off 1 and axial surface 22T is fixed to the 
top of the ramp (bend 2). In Suppe’s (1983) description of 
this change, the 11L and 22T axial surfaces switch their 
initiation point so that ZZL is fixed to fault bend 2 and 
22T moves with hangingwall cut-off 1. Alternatively, the 
change can be described in terms of second-generation 
and branch axial surfaces as introduced above (Fig. 10). 

In a general two-bend thrust system, migration of 
hangingwall cut-off 1 past fault bend 2 results in a 
second-generation axial surface fixed to fault bend 2. 
This axial surface branches at the stratigraphic horizon of 
hangingwall cut-off 1 (Fig. 12). In the flat-ramp-flat 
system these additional axial surfaces are all degenerate 
because the stratigraphic horizon of hangingwall cut-off 
1 lies on the fault (Fig. lob). The second-generation axial 
surfaces have zero length because they begin and end at 
the same point. Branch axial surfaces produce no folding 
because they form perpendicular to bedding. The topol- 
ogy of the axial surfaces is identical to the general case. 
Thus, single-segment ramps are a degenerate case of 
multibend ramps. 

A two-ramp thrust system (Fig. 1 la) has four fault- 
bends and thus 10 ([42+ 4]/2) possible unique bedding 
dips (Fig. 6). At one stage or another seven unique dips 
are actually generated. Yet at large displacement this 
system results in an anticline with just four kink bands 

Fig. 8. Complex branch development generated on a two-bend fault. 
(a) Convex-concave bend sequence creates kink-band intersection. (b) 
Kink-band intersection point PI migrates down to the fault and fixes to 
horizon 1. (c) Formation of second-generation axial surface creates 

complex branch-intersection interference. 
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Fig. 9. (a) Development of a two-segment, convex-ramp fault system. (1) Initial fault geometry. (2) Hangingwall cut-off 2 
adjoins fault bend 3. (3) Hangingwall cut-off 1 adjoins fault bend 2. (4) Hangingwall cut-off 1 adjoins fault bend 3. (5) 
Continued displacement widens the fold, but does not modify axial-surface topology. (b) Development of a two-segment, 
convex thrust-ramp system. Overall shape of the fold is convex-up in the back limb and concave-up in the front limb. This 

geometry reflects the shape of the thrust ramp. 

(Fig. 1 lj). This simplicity is related to degeneracy of 
second-generation and branch axial surfaces for flat-on- 
flat geometries. In multibend ramps, sweeping interfer- 
ence branch points reflect at hangingwall cut-off horizons 
(Fig. 8b) leaving remnant dip panels and associated axial 
surfaces. In straight ramp-flat-ramp systems, branch 
points lie on the fault and interference structures are able 
to sweep completely through the hangingwall and thus 
vanish (Fig. 1 la-j). The consequent elimination of dip 
panels results in the simple fold geometry at large 
displacement. 

tained at large fault slip because branch points become 
fixed at hangingwall cut-off horizons. In single-segment 
ramp systems, second-generation axial surfaces have zero 
length and related branch axial surfaces are perpendi- 
cular to bedding. Neither of these secondary structures 
modifies the fold shape. Furthermore, branch points lie 
on the fault surface allowing intersecting kink bands to 
sweep completely through one another so that simple 
angular folds occur at large displacements (Fig. 11). 

Quasi-curved ramps 

Comparison of multibend and straight ramp folds In theory, curved faults can be approximated by an 
arbitrary number of straight segments. In practice, a 

Multi-segment ramps generate non-parallel axial sur- small number of fault segments generates a high-degree 
faces (Fig. 9). Proliferation of these axial surfaces of complexity and adequately models fold geometry. 
produces quasi-curved folds. Fold complexity is main- Figure 12 illustrates a flat-rampflat fault system with 
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11~ 128 22T 

Fig. 10. Detailed analysis of axial surfaces formed at a flat-rampflat 
fault-bend fold formed over an angular thrust ramp. In this special case 
the fold remains angular for two reasons. Firstly, the branch horizon of 
the second-generation axial surfaces lies along the fault. Thus the 
second-generation axial surfaces have zero length. Secondly, the branch 
axial surfaces are perpendicular to regional dip and thus have no dip 

change across them. 

four ramp segments. The ramp is concave-up at its base 
and convex-up at its top approximating a curved ramp. 
Moderate displacement on the fault generates a quasi- 
curved fold (Fig. 12b). Fold curvature occurs by 
coalescence of a number of branch axial surfaces. This 
effect is more pronounced at large displacements as 
additional branches are generated each time a hanging- 
wall cut-off passes a fault-bend (Fig. 12~). As there are 
many more hangingwall cut-off/fault-bend combinations 
than fault-bends, folds become progressively more 
curved than their generative faults. 

Ramp andfault termination geometries 

Geometries discussed to this point are all through- 
going, single-fault thrust systems. Multibend fold con- 
cepts are equally applicable to thrust systems with 
displacement discontinuities such as wedge-thrusts, 
fault-propagation folds, and box folds (Fig. 13). 
Although these systems require certain special treat- 
ments, they can all be described with arrays of bisecting 

axial surfaces emanating upward from points fixed in 

either the hangingwall or footwall of the fault. Thus, the 
resultant folds can be treated with the same procedures 
developed for through-going thrust systems. This is 
particularly useful for development of computer-based 
forward modeling algorithms. 

ORIGIN OF FOLD COMPLEXITY 

The addition of fault bends increases the fold complex- 
ity in a highly non-linear way. For example, the simple 
ramp-flat model of Fig. 10 has 2 primary kink bands and 
4 non-degenerate axial-surface segments. The addition of 
one more ramp (Fig. 1 Id) adds 2 primary kink bands, but 
adds 12 non-degenerate axial-surface segments, for a 
total of 16 axial-surface segments. The further addition of 
more stratigraphy, one more ramp, greater fault slip, and 
a fault termination in a box fold (Fig. 14) adds 5 more 
primary kink bands, but adds 59 non-degenerate axial- 
surface segments, for a total of 75 axial-surface segments. 
Thus the low-level processes of compressive fault-bend 
folding lead to great complexity with the addition of fault 

bends. 
Two processes generate the degree of complexity 

observed in multibend fault-bend folds. First is the 

generation of new dip panels and associated axial 
surfaces by displacement of hangingwall cut-offs past 
successive fault bends. The second process generating 
complexity is fragmentation of axial surfaces by mutual 
interference. Both of these processes are functions of the 
number of fault bends. The curved ramp example of Fig. 
12 is dominated by the first process. The multi-ramp 
example of Fig. 14 involves both processes, but is 
dominated by the second process because of the simple 
rampflat geometry. 

To illustrate the non-linear way in which these low- 
level processes affect fold shape, we estimate the number 
of axial surfaces, N,,, which are generated for a fault with 
Nfh bends. Fault-bend folding produces two axial 
surfaces at each fault-bend fold dip-panel. Thus, the 
number of axial surfaces generated directly at fault bends 
is (Nfi2 + Nfb). The number of kink bands that interfere 
depends significantly on the exact fault shape. Kink 
bands associated with each unique dip-panel have a 
specific dip when bounded by the regional dip; adjacent 
kink bands with different dips intersect to form inter- 
ference structures. Generation of interference structures 
continues until the kink bands are sorted by dip and 
diverge upward (Fig. 14). In the limiting case each kink 
band will interfere with every other, so that the maximum 
number of intersections of Nkb kink bands is [NkhZ - N& 
2. For fault-bend folding the number of possible 
intersections will be about half this amount because 
many of the potential intersections would occur below 
the fault. Thus for Nkb kink bands the maximum number 
of hangingwall intersections is approximately 

[Nkb2 - Nkb]/4. 
We can now estimate the total number of hangingwall 
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Fig. 11. Sequential development of a two-ramp fault system. The two ramps consist of single-dip segment and are connected 
by a flat. This simple geometry creates a number of degenerate and parallel axial surfaces. Merger of opposite-sign axial 

surfaces annihilates each so that the anticline geometry becomes simpler at large displacements. 

axial surfaces generated by a fault of NJ~ bends by 
summing the number of primary kink-band axial 
surfaces and the number of axial-surface fragments 
generated by interference. The later is estimated by 
combining the number of kink bands generated by Nib 
fault bends, with the approximate number of hanging- 
wall intersections generated by Nk&, kink bands, and 
multiplying by the number of fold-axial-surface frag- 
ments per kink band (6). The resulting expression is: 

degenerate and thus do not produce intersections. 
Second, simultaneous intersection of three or more kink 
bands generally creates fewer than six axial-surface 
fragments per intersection. In addition, many of the 

theoretical axial surfaces occur above the stratigraphy of 
interest. Nevertheless, fold complexity is a fourth-order 
function of the number of fault bends. 

DISCUSSION 

No,% [ 1 . (1) 
Note that we do not count bedding-parallel axial 

surfaces because they do not fold bedding and because 
folding of axial surfaces across them is reflected in the 
number of fold axial surfaces. 

Equation (1) represents an approximation of the 
maximum degree of fold complexity for a fault of NJ~ 
bends. Specific faults will have fewer axial-surface 
fragments for two reasons. First, some kink bands are 

Deciphering fault geometry from fold geometry 

Often we are faced with the practical problem of 
deciphering unseen fault geometry from fold geometry. 
This is a very difficult problem in the case of complex 
structures (for example to decipher the deep structure of 
Fig. 14b from the shape of the top layer). Fortunately, 
some techniques are available to assist in this task. When 
applicable, the most powerful of these is analysis of 
growth strata (Medwedeff, 1989; Suppe et al., 1992). 
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Fig. 12. Development of quasi-curved ramp anticline. Thrust system consists of four ramp segments connecting two flat 
detachments. With displacement, branch axial-surfaces accumulate in the hangingwall causing the anticline to be more 

smoothly curved than the underlying fault. 

Growth strata directly distinguish active from inactive 
axial surfaces and may also indicate the number of fault 
bends and the sense of fault-slip. Comparison of fold 
timing can identify genetically related axial surfaces thus 
limiting the number of plausible fault geometries (Shaw 
and Suppe, 1996). More widely applicable is the use of 
forward modeling to develop and test fault solutions 
(Mount et al., 1990). This method is particularly suited to 
interpretation of sparse or poor data and efficiently 
generates viable and testable subsurface models. Finally, 
in the case of excellent data, restoration can be a powerful 
technique (Medwedeff, 1992; Suppe et al., 1997). 

Limitations 

In this paper we have examined the subtle intricacies of 
fault-bend fold theory and have documented some of the 
tremendous variety and complexity in fold geometry that 
can be generated from simple fault shapes, despite the 
minimal low-level assumptions of flexural slip and 
straight fault segments. Nevertheless, these underlying 

assumptions should be treated as approximations of at 
most a subset of the full scope of natural behavior. When 
natural processes are close to these assumptions, the 
theory should be applicable. Where other process 
operate, or are dominant, the theory needs modification 
or may not apply at all (Suppe, 1983). 

CONCLUSIONS 

Application of fault-bend folding theory to thrust 
systems with multi-segment ramps generates realistic- 
looking, quasi-curved fold geometries by the generation 
of new axial surfaces as a result of the displacement of 
hangingwall cut-offs past successive fault bends. 

Furthermore, kink-band interference within the hang- 
ingwall above the fault can cause a great increase in fold 
complexity, which grows as a highly non-linear function 
of the number of fault bends. 

Simple, angular fold geometries are not a necessary 
consequence of the low-level assumptions of fault-bend 
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a) Wedge Structure 

Fiv 17 Annlication of multibend, fault-bend fold theory to alternate --o- --- ._rr~~~~~.__._ _. 
fault terminations. (a) Wedge-thrusts, (b) fault-propagation folds, and 
(c) box folds can each be analyzed. Except for the fold termination itself, 

the fault system is treated as a fault-bend fold. 

fold theory. Thus neither curved faults nor penetrative 
deformation mechanisms are required to generate com- 
plex or curved folds. 
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